Extensions 1→N→G→Q→1 with N=C32 and Q=C3⋊Q16

Direct product G=N×Q with N=C32 and Q=C3⋊Q16
dρLabelID
C32×C3⋊Q16144C3^2xC3:Q16432,478

Semidirect products G=N:Q with N=C32 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C321(C3⋊Q16) = He32Q16φ: C3⋊Q16/C4D6 ⊆ Aut C321446-C3^2:1(C3:Q16)432,80
C322(C3⋊Q16) = He33Q16φ: C3⋊Q16/C4D6 ⊆ Aut C3214412-C3^2:2(C3:Q16)432,86
C323(C3⋊Q16) = C33⋊Q16φ: C3⋊Q16/C6D4 ⊆ Aut C32484C3^2:3(C3:Q16)432,585
C324(C3⋊Q16) = He36Q16φ: C3⋊Q16/Q8S3 ⊆ Aut C3214412-C3^2:4(C3:Q16)432,160
C325(C3⋊Q16) = He37Q16φ: C3⋊Q16/Q8S3 ⊆ Aut C321446C3^2:5(C3:Q16)432,197
C326(C3⋊Q16) = C337Q16φ: C3⋊Q16/C12C22 ⊆ Aut C32144C3^2:6(C3:Q16)432,446
C327(C3⋊Q16) = C339Q16φ: C3⋊Q16/C12C22 ⊆ Aut C32484C3^2:7(C3:Q16)432,459
C328(C3⋊Q16) = C3×C323Q16φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C32484C3^2:8(C3:Q16)432,424
C329(C3⋊Q16) = C338Q16φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C32144C3^2:9(C3:Q16)432,447
C3210(C3⋊Q16) = C3×C322Q16φ: C3⋊Q16/Dic6C2 ⊆ Aut C32484C3^2:10(C3:Q16)432,423
C3211(C3⋊Q16) = C336Q16φ: C3⋊Q16/Dic6C2 ⊆ Aut C32144C3^2:11(C3:Q16)432,445
C3212(C3⋊Q16) = C3×C327Q16φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C32144C3^2:12(C3:Q16)432,494
C3213(C3⋊Q16) = C3315Q16φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C32432C3^2:13(C3:Q16)432,510

Non-split extensions G=N.Q with N=C32 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C32.(C3⋊Q16) = Dic18.C6φ: C3⋊Q16/Q8S3 ⊆ Aut C3214412-C3^2.(C3:Q16)432,162
C32.2(C3⋊Q16) = C12.D18φ: C3⋊Q16/C12C22 ⊆ Aut C321444C3^2.2(C3:Q16)432,74
C32.3(C3⋊Q16) = C9⋊Dic12φ: C3⋊Q16/C12C22 ⊆ Aut C321444-C3^2.3(C3:Q16)432,75
C32.4(C3⋊Q16) = C3×C9⋊Q16φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C321444C3^2.4(C3:Q16)432,156
C32.5(C3⋊Q16) = C36.19D6φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C32432C3^2.5(C3:Q16)432,194

׿
×
𝔽